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developmental disruptions at various embryonic or fetal stages. The clinical presentation is
nonspecific and can include developmental delay, hypotonia, and/or epilepsy. An informed
combination of imaging and genetic testing enables early and accurate diagnosis and man-
agement planning. In this article, we provide a streamlined approach to radiologic pheno-
typing and genetic evaluation of brain malformations. We will review the clinical workflow
for brain imaging and genetic testing with up-to-date ontologies and literature references.
The organization of this article introduces a streamlined approach for imaging-based etio-
logic classification into malformative, destructive, and migrational abnormalities. Specific
radiologic ontologies are then discussed in detail, with correlation of key neuroimaging fea-
tures to embryology and molecular pathogenesis.
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Introduction

Congenital brain malformations are abnormalities present
at birth that can result from developmental disruptions

at various embryonic or fetal stages. The clinical presentation
is nonspecific and can include developmental delay, hypoto-
nia, and/or epilepsy. An informed combination of imaging
and genetic testing enables early and accurate diagnosis and
management planning. In this article, we provide an inte-
grated approach to radiologic phenotyping and genetic eval-
uation of brain malformations. We will review the clinical
workflow for brain imaging and genetic testing with up-to-
date ontologies and literature references. The organization of
this article introduces an integrated approach for etiologic
classification into malformative, destructive, and migrational
abnormalities. Specific radiologic ontologies are then dis-
cussed in detail, with correlation of key neuroimaging fea-
tures to embryology and molecular pathogenesis.
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Imaging Evaluation
During the fetal period, ultrasonography (US) of the preg-
nant mother is the first-line imaging modality. Level 1
(screening) obstetric US can be performed at various times
during pregnancy (first, second, third trimester) to assess
fetal viability, normal growth, placental location, amniotic
fluid, and major defects. Level 2 (survey) US can be ordered
in the second trimester for comprehensive evaluation of fetal
anatomy including brain, visceral organs, umbilical cord,
limbs, and genitalia; as well as growth (biometry measure-
ments on gestational age). Level 3 US (advanced) is some-
times performed in the late second-third trimester for
detailed evaluation of complex conditions. Key limitations of
US include restricted acoustic window through the maternal
abdomen, limited depth penetration, and artifactual shadow-
ing from bowel gas or bone.1,2

Fetal positioning, maternal body habitus, oligohydram-
nios, overlying bone or gas, and small field of view can all
restrict the US imaging window. When US is inconclusive
and specific anomalies are suspected, fetal MRI is the next
step in imaging workup. MRI can be performed from the
early second through late third trimesters, when the fetal
structures are sufficiently large and well developed to image.
Inherent tradeoffs exist in fetal MRI timing, with the need for
earlier diagnosis and/or intervention balanced against
improved resolution, greater safety, and decreased motion in
later gestation. Brain-specific indications for fetal MRI
1
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Figure 1 Normal 5-layer appearance of fetal brain at 23 weeks gestation. CP, cortical plate; GM, germinal matrix; IZ,
intermediate zone; PV, periventricular crossroads; SP, subplate.
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include suspected malformations, infarcts, hemorrhage,
masses, and vascular anomalies.3 Typically, 3-plane single-
shot T2-weighted image are obtained to assess cerebral anat-
omy. Optional sequences include high-resolution steady-
state, T1-weighted, diffusion-weighted, and gradient-recalled
echo images. The normal fetal brain shows a normal multi-
layered appearance of alternating intensities, with 3 layers
prior to 20 weeks, and 5 layers by 20-28 weeks gestation.
Distinct cell populations include the germinal matrix, gangli-
onic eminences, periventricular crossroads, intermediate
zone, subplate, and cortical plate. This yields multiple zones
including ventricular (radial fibers), subventricular (tangen-
tial fibers), periventricular (crossing fibers), intermediate
(glia), subplate (interstitial fibers), and cortical plate (gray
matter) (Figure 1). Normal neurodevelopment also involves
progressive myelination (axonal coating for rapid
Table Congenital Brain Malformation Phenotypes and Recommende

Radiology Findings
Cytogenetics Gene Panel

Malformative lesions
Callosal dysgenesis Yes No

Septo-optic dysplasia No Yes

Holoprosencephaly Yes No

Chiari malformations No No

Dandy-Walker spectrum Yes No

Joubert syndrome-related disorders Secondary No

Pontine tegmental cap dysplasia No No

Rhombencephalosynapsis Yes No

Destructive lesions
Acrania-exencephaly-anencephaly sequence No No

Schizencephaly No No

Porencephaly No No

Hydranencephaly No No

Maximal hydrocephalus

Encephalomalacia No Yes

Migrational lesions
Gray matter heterotopia Yes No

Lissencephaly-pachygyria Yes No

Cobblestone cortex No No

Polymicrogyria No No

Megalencephaly Yes Yes

Focal cortical dysplasia No No

Tubulinopathies No No

CNV, copy number variant; ES, whole exome sequencing; GS, whole genom
conduction) and sulcation (brain folding) that progresses
from mid-second trimester through postnatal life.4

Radiologic classification of congenital brain malformations
is complex and continually evolving. The spectrum of devel-
opmental times and etiologies can overlap for different lesion
categories. Furthermore, accurate detection of abnormalities
on fetal imaging depends on many factors including imaging
technique, patient characteristics, and radiologist expertise.
Therefore, multidisciplinary consensus evaluation is key to
accurate patient/family counseling and optimizing the yield
of genetic testing. In this article, we provide an etiology-
based imaging classification consisting of malformative,
destructive, and migrational abnormalities. Specific radio-
logic ontologies are discussed in detail, with correlation of
key neuroimaging features to embryology and molecular
pathogenesis (Table).5-7
d Genetic Testing

Genetic Testing

ES/GS Do Not Test Comment

Yes No

No No

Yes No

No Yes

Yes No

Yes No CNV in NPHP1 (nephrocystin 1)

No Yes

No No ES/GS if combined with holoprosencephaly

No Yes

Yes No

Yes No

Yes No

No No MoCD (molybdenum cofactor deficiency), sul-

fur metabolism

Yes No

Yes No CNV for Miller-Dieker syndrome

Yes No

Maybe No Consider mosaicism when selecting tissue for

testing

No No CNV for AKT3 (AKT Serine/Threonine Kinase

3), targeted testing for mosaicism

Yes No Consider paired analysis with affected tissue

Yes No

e sequencing.



Figure 2 Categorical approach to genetic testing in patients with congenital brain malformations. Potential syndromic
findings may require confirmation with laboratory testing and/or imaging. Complex cases are defined as having multi-
ple CNS abnormalities. Patient acuity, hospital resources, and insurance considerations will guide whether testing is
performed in parallel or sequentially. CMA, chromosomal microarray; CNS, central nerveous system; ES, whole exome
sequencing; GS, whole genome sequencing; T, trisomy. Category A: callosal hypogenesis, holoprosencephaly, Dandy-
Walker malformation, gray matter heterotopia, Miller-Dieker syndrome, lissencephaly-pachygyria, cobblestone cortex.
Category B: rhombencephalosynapsis. Category C: septo-optic dysplasia, cystic encephalomalacia. Category D: mega-
lencephaly. Category E: polymicrogyria, focal cortical dysplasia.
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Genetic Testing
An extensive array of options are available for genetic testing
in the antenatal and neonatal periods (Table). To maximize
diagnostic efficiency and value, we advise a structured deci-
sion support workflow for genetic testing (Fig. 2). Patient
acuity, hospital resources, and insurance considerations help
guide the nature and timing of testing. Single-gene testing is
performed when there is high suspicion for a certain syn-
drome or a known familial genetic mutation, rarely the case
for structural brain abnormalities. Narrow testing, that is
gene panels for brain malformations, are offered by different
providers with varying coverage and accuracy. Cytogenetic
testing assesses chromosomal numerical (aneuploidy) and
Figure 3 Cerebral commissures. AC, anterior commissure; CC
posterior commissure.
structural abnormalities (duplication, deletion, translocation,
inversion, insertion). Karyotyping is the leading method to
stain and visualize chromosomes during metaphase using
Giemsa banding, with a resolution of 5-10 megabases.8

Chromosomal microarray analysis (CMA) is a newer method
in which oligonucleotide probes are used to label genomic
DNA through hybridization. CMA can be performed on raw
samples without culturing and is sensitive for smaller dele-
tions and duplications, such as copy-number variants (CNV)
in the kilobase range, and single nucleotide polymorphisms
(SNP) of specific base-pair locations.9 If the above tests are
unrevealing, the next step is broad next-generation sequenc-
ing of the whole exome (ES) or whole genome (GS).10
, corpus callosum; HC, hippocampal commissure; PC,



Figure 4 Callosal hypogenesis. (A) Callosal anomalies range from hypogenesis (partial absence), with foreshortening and/or posterior tapering;
to agenesis (complete absence) with “sunburst” gyri radiating directly from the roof of third ventricle. (B) Callosal dysgenesis affects global brain
folding with everted cingulate gyri and absence of cingulate sulci. The frontal horns demonstrate a “steer”/“ram” morphology (white arrows).
Temporal lobes and hippocampi are malrotated (black arrows) with “keyhole” temporal horns (dashed white arrows). (C) Colpocephaly
describes the ventricular configuration in callosal hypogenesis. Lateral ventricles are parallel with a “teardrop” morphology, created by bulging
atria and occipital horns (asterisks) in the absence of delimiting optic radiations. Interhemispheric cysts (arrow) can form near midline with var-
iable configuration, ventricular communication, and associated migrational anomalies. (D) Anomalous connectivity in callosal agenesis includes
Probst bundles (left panel, arrows), with homotopic connections from anterior to posterior in a single cerebral hemisphere. In callosal hypogen-
esis, sigmoid bundles (right panel, arrows) represent heterotopic connection between the frontal lobe of one hemisphere and the occipital lobe
of the contralateral hemisphere.
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In the prenatal setting, it is important to distinguish syn-
dromic from nonsyndromic etiologies. Multisystem abnor-
malities on imaging, involving central nervous system (CNS)
and/or non-CNS structures, can suggest a specific diagnosis.
When cytogenetic testing is nondiagnostic and prenatal
molecular diagnosis is desired, the neurologist may be



Figure 4 Continued.
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consulted (in conjunction with a genetic counselor or medi-
cal geneticist) to choose between a gene panel or exome
sequencing. Two key considerations in making this recom-
mendation are the proportion of similar cases diagnosed by
panel versus exome, and the consequences of delayed diag-
nosis for the suspected genetic disorder. Generally, panels
are preferred if known to be of high diagnostic yield, and in
settings where delayed diagnosis is unlikely to change medi-
cal decision making or ultimate pregnancy outcome. In situa-
tions where panels offer lower diagnostic yield (eg, unusual
combination of multisystem features), and/or delayed diag-
nosis could adversely impact management or outcome (eg,
anticipated fetal intervention, birth complications, critical
postnatal illness, planning goals of care), prenatal exome
sequencing is justified as a first-line sequencing modality.
However, insurance coverage for prenatal exome sequencing
remains limited, therefore this choice may not be available to
many patients.11

In the neonatal setting, key factors include the severity of
patient illness and potential for adverse outcomes resulting
from delayed diagnosis (sequential testing compared to early
use of rapid or ultrarapid genome sequencing). When
obtained in the appropriate clinical setting, genome sequenc-
ing shows high diagnostic yield and clinical utility with mini-
mal impact on psychosocial outcomes.12,13 At our
institution, we recommend that the neurologist consider
worst-case scenarios when contemplating sequential testing,
and not order more than one panel before reflexing to exome
sequencing.
Finally, while imaging plays a central role in phenotyp-

ing patients with congenital brain malformations, the
radiologist is seldom directly involved in ordering genetic
testing. Luckily, the neurologist is uniquely positioned to
bridge the communication gap between radiology and
primary providers, particularly when ES or GS is being
considered. Provider guidelines for prior authorization
vary widely, such that awareness and understanding of
terminology for congenital brain malformations is critical.
The accepted genetic ontology for phenotyping in rare
diseases is Human Phenotype Ontology (HPO),5 which
incompletely overlap with radiologic taxonomy.5 When a
clear taxonomic match is not apparent, close collabora-
tion between the neurologist and neuroradiologist will
help determine the most appropriate ontologic terms to
provide to the genetic testing laboratory. To simplify
understanding, we utilize an etiology-based classification
of radiology phenotypes into malformative, destructive,
and migrational abnormalities. Within this framework, we
discuss specific taxonomy of congenital brain malforma-
tions including leading etiologic theories, key imaging
findings, and up-to-date genetic understanding.
Malformative Lesions
In malformative lesions, the brain fails to form normally due
to a primary error of development. Malformations vary in
appearance and severity, based on the etiology and stage of
development; and can affect various locations including fore-
brain, midbrain, and hindbrain.
Callosal Dysgenesis
Cerebral commissures are white matter tracts that cross mid-
line and connect the cerebral hemispheres. The corpus cal-
losum (CC) is the largest midline commissure in placental
mammals. It progressively myelinates and achieves a mature
configuration by 8-9 months of age, with a slightly bulbous
appearance of the splenium (forceps major) posteriorly and
genu (forceps minor) anteriorly. Other cerebral commissures
include the anterior commissure, which connects the tempo-
ral lobes and crosses anterior to the forniceal pillars; posterior
commissure, which connects the pretectal nuclei and crosses
dorsal to the cerebral aqueduct; and hippocampal commis-
sure, which connects the hippocampi and crosses inferior to
the splenium (Fig. 3).



Figure 5 Septo-optic dysplasia. Callosal hypogenesis with absent septum pellucidum (dotted line) yielding “boxcar”
frontal horns and low-lying fornices (dotted rectangle), ectopic posterior pituitary bright spot (white arrows), optic
nerve hypoplasia (dotted arrow), olfactory hypoplasia (dotted oval), and schizencephaly (black arrows).
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Callosal dysgenesis can range from hypogenesis (partial
absence, HCC or pACC) to agenesis (complete absence,
ACC). During development, the callosum grows both anteri-
orly and posteriorly from the embryonic glial sling, with
greater volume anteriorly due to the large frontal lobes in
humans. Therefore, callosal hypogenesis can manifest with a
foreshortened and/or posteriorly tapered appearance. Cal-
losal agenesis manifests with “sunburst” gyri radiating
directly from the roof of third ventricle. Anterior, posterior,
and hippocampal commissures are usually also small or
absent (Fig. 4A).14,15

Callosal abnormalities affect global developmental brain
folding, producing a constellation of associated findings. The
cingulate sulci fail to invert over the callosum, such that the
cingulate gyri remain everted. Parasagittal bands of white
matter (Probst bundles) course along their respective hemi-
spheres, rather than crossing midline. This produces thin
curved “steer”/“ram” frontal horns (white arrows). The
temporal lobes and hippocampi also fail to rotate and invert,
producing globular hippocampi and “keyhole” temporal
horns (Fig. 4B).16

The ventricular configuration in callosal dysgenesis is
known as colpocephaly. Lateral ventricles demonstrate a paral-
lel orientation and “teardrop” morphology with bulging of the
atria and occipital horns (asterisks). This is due to absent
crossing of the optic radiations, which normally limit lateral
expansion of the ventricles. In contrast, the frontal horns are
medially confined by the Probst bundles and laterally confined
by the lentiform nuclei. Associated paramedian lipomas17,18 or
interhemispheric cysts can be present. Interhemispheric cysts
vary in location, communication with the ventricular system,
and associated malformations.19-21 They are frequently asym-
metric, with the more involved hemisphere demonstrating
more severe structural malformations (AVID = asymmetric
ventriculomegaly, interhemispheric cyst, and dysgenesis of the
corpus callosum) (Fig. 4C).22,23



Figure 6 Holoprosencephaly. (A) Varying degrees of forebrain can be present. Lobar HPE refers to mild fusion of the
basal frontal lobes and anterior corpus callosum, with small frontal horns. Semilobar HPE involves partial fusion and
malrotation of the frontal lobes and deep gray nuclei, with a small third ventricle and dorsal cyst. Alobar HPE consists
of a rudimentary “pancake” brain with conglomerate fusion and gaping monoventricle. (B) Sublobar HPE involves the
basal forebrain in the septal and preoptic regions (circles). (C) Syntelencephaly or middle interhemispheric variant of
HPE involves fusion of the dorsal forebrain (arrows, posterior frontal and parietal lobes), with greater separation of
deep gray nuclei than in conventional HPE (ventral forebrain).
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Aberrant connectivity patterns are common in callosal dys-
genesis. With callosal agenesis, Probst bundles reflect homo-
topic connectivity from anterior to posterior within a single
cerebral hemisphere. In callosal hypogenesis, sigmoid bun-
dles may be observed connecting the frontal lobe of one
hemisphere to the contralateral occipital lobe. These repre-
sent heterotopic connectivity from anterior to posterior
between different cerebral hemispheres. Widespread disrup-
tions of connectivity have been detected even in the fetal
stage (Fig. 4D).24-28
Anomalies of the corpus callosum are among the most
common incidental imaging findings in the general popu-
lation, and are overrepresented in children with neurode-
velopmental disabilities. As such, much of the pediatric
literature regarding genetic epidemiology29 is less relevant
when compared to more unbiased prenatal studies.30,31

Copy number variants (CNV) account for 9.4% of
ACC.32 In two recent small case series, 5/1933 and 7/1034

fetuses undergoing ES for ACC/HCC had a molecular
diagnosis. Multiple genetic causes of ACC have been



Figure 7 Chiari malformations. (A) Chiari 1 malformation due to platybasia with posterior fossa crowding (arrows). The cerebellar tonsils are
pointed and inferiorly herniated, with cervical cord syrinx and decreased CSF flow through the craniocervical junction. (B) Fetal imaging of
Chiari 2 malformation with lumbosacral spine myelomeningocele (i, black arrow) and resulting cerebellar tonsillar descent (i, white arrow).
Brain US (ii) and MRI (iii) show ventriculomegaly, “lemon” sign with bifrontal concavity (solid arrows), and “banana” sign with herniated cere-
bellar tonsils surrounding the brainstem (dotted arrows). (C) Postnatal Chiari 2 with posterior fossa hypoplasia resulting in towering cerebel-
lum and herniated cerebellar tonsils (white arrows), tectal beaking (dotted circle), callosal hypogenesis (dotted rectangle), paramedian
stenogyria (dotted oval), and Luckensch€adel skull (black arrows). (D) Chiari 3 with cervico-occipital encephalocele (arrows) resulting in cere-
bellar and occipital lobe herniation with encephalomalacia (asterisks).
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linked to abnormalities of axonal guidance, cilia develop-
ment, cell adhesion, proliferation, differentiation, and
migration.35 Complete and partial ACC are listed in the
HPO (HP:0001274) and described at least once in »350
rare disorders linked to »250 genes or chromosomal
loci, almost all syndromic.5



Figure 7 Continued.
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Septo-Optic Dysplasia
Septo-optic dysplasia (SOD) encompasses a wide spectrum
of forebrain malformations. At least two of the classic de
Morsier triad should be present for diagnosis: (1) callosal
hypogenesis with absent septum pellucidum, (2) optic nerve
hypoplasia, and (3) hypothalamic-pituitary dysfunction.36

Importantly, nonvisualization of the septum pellucidum
without associated midline findings is not an indication for
genetic workup. The septum can be poorly seen due to imag-
ing technique, as well as acquired thinning or perforation
associated with ventriculomegaly.37 Cavum septum pelluci-
dum refers to fluid filling the potential space between the
septal leaves, and represents normal anatomic variation par-
ticularly in fetuses and neonates.38,39 When the septum is
truly absent, there is a lack of indentation between the frontal
horns, creating a “boxcar” appearance. In addition, the
absence of membranous connection between the callosum
and fornices leads to sagging of the latter. Optic nerve hypo-
plasia is an ophthalmologic diagnosis, but may be visible on
MRI if severe. Hypothalamic-pituitary dysfunction is based
on hormonal testing, and can be present even if the pituitary
gland appears normal on MRI. Potential imaging abnormali-
ties include posterior pituitary ectopia, stalk interruption, or
panhypopituitarism may be identified at imaging. The olfac-
tory region is another forebrain derivative that can be
affected, producing Kallmann syndrome with hyposmia or
anosmia.40 Overall, the spectrum of SOD manifestations is
broad and includes incomplete SOD, complete SOD, and
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“SOD plus” with additional cerebral, cerebellar, and/or
orbital malformations.41,42 Most cases are sporadic, and a
genetic etiology is seldom identified. Only a small number of
genetic loci have been implicated (HESX1, SOX2/3, OTX2),
collectively accounting for <1-5% of cases (Fig. 5).43,44
Holoprosencephaly
Holoprosencephaly (HPE) refers to a spectrum of ventral
induction abnormalities with varying degrees of forebrain
fusion/dysplasia along the ventral floor plate, essentially rep-
resenting a more severe version of SOD.45-48 Fusion can
involve the frontal lobes, deep gray nuclei, ventricles, and
cerebral arteries (azygos anterior cerebral artery). The ante-
rior corpus callosum may be deficient, which effectively dis-
tinguishes HPE from pACC. Craniofacial structures can also
be involved, with manifestations including hypotelorism and
single median maxillary central incisor. Anatomically and
clinically, the most severe form is alobar HPE with a rudi-
mentary “pancake” brain located in the anterior cranial cavity
and large dorsal monoventricle. Semilobar HPE involves par-
tial fusion and malrotation of the frontal lobes and deep gray
nuclei. The third ventricle is characteristically small and a
midline dorsal cyst may be present. Lobar HPE refers to mild
fusion of the basal frontal lobes and anterior corpus cal-
losum. The frontal horns may be hypoplastic and sylvian fis-
sures anteromedially displaced.49,50 More recently described
variants include sublobar or septopreoptic HPE, with mini-
mal fusion of the basal forebrain51; and syntelencephaly or
middle interhemispheric variant (MIH) involving the dorsal
roof plate, typically posterior frontal and anterior parietal
lobes.52,53

Likely because of the fundamental biological processes
involved, chromosomal aberrations (most commonly trisomy
13, but various additional chromosomes and mechanisms)
account for 25%-50% of HPE cases; therefore HPE is one of
the few remaining justifications for karyotyping in the neona-
tal period. CNVs detectable by microarray account for
another 10% of cases. 18%-25% of cases have identifiable
single nucleotide variants (SNV) or indels in single genes,
though most are syndromic and exceedingly rare. The most
common causes of nonsyndromic HPE include SHH, GLI2,
SIX3, TGIF (ventral floor plate) and ZIC2 (dorsal roof plate),
which collectively cause 17% of HPE (Fig. 6).54-57
Chiari Malformations
Chiari malformations are congenital posterior fossa abnor-
malities with a diverse imaging classification. The unifying
imaging feature is a small posterior fossa with dysplastic ton-
sils herniated below the skull base. Such a configuration can
obstruct cerebrospinal fluid (CSF) flow through the cranio-
cervical junction, producing a spinal cord syrinx. In Chiari 1,
the posterior fossa abnormality is isolated.58 In higher Chiari
malformations, there are additional brain abnormalities due
to a congenital neural tube defect, that is lumbosacral myelo-
meningocele in Chiari 2 and cervico-occipital encephalocele
in Chiari 3. The presence of a CSF leak in utero causes
developmental CSF hypotension with global brain manifesta-
tions, which can include aberrant sulcation, stenogyria (mul-
tiple small folds), polymicrogyria, heterotopia, callosal
hypogenesis, enlarged massa intermedia, tectal beaking with
fused superior and inferior colliculi, small tentorial incisura
with upward and downward cerebellar herniation, and dor-
sal cervicomedullary kink. The Management of Myelomenin-
gocele Study (MOMS) demonstrated that fetal
myelomeningocele closure reduces hydrocephalus and hind-
brain herniation, and improving short and long-term out-
comes compared to postnatal surgery.59-61

True diagnosis of Chiari requires clinical confirmation
with a high-pressure, position-dependent occipital headache.
For patients with worsening symptoms, surgical posterior
fossa decompression with optional tonsillectomy can relieve
pressure on the brainstem and restore CSF flow through the
craniocervical junction. Of note, other disorders can mimic
Chiari malformations on imaging but require different man-
agement. For example, CSF hypotension, posterior fossa
tumors, and craniofacial syndromes can also present with
tonsillar crowding and herniation. Additional proposed
Chiari subtypes are somewhat controversial, but include
Chiari 0 (cord syrinx without posterior fossa abnormality),
Chiari 0.5 (isolated brainstem sag), Chiari 1.5 (tonsillar and
brainstem descent), Chiari 4 (hypoplastic cerebellum), Chiari
5 (absent cerebellum with occipital horn herniation)
(Fig. 7).62

Given the vast heterogeneity of Chiari malformations,
underlying etiology and genetics are poorly understood.63,64

Various chromosomal aberrations have been described in
Chiari 1 patients.65 Secondary (complex) Chiari 1 is associ-
ated with several genetic syndromes including the FGFR,
ERF, RAS/MAPK, and PTEN-PI3K/AKT pathways.66
Dandy-Walker Spectrum
Dandy-Walker malformation refers to a wide spectrum of
infratentorial malformations characterized by cerebellar
underdevelopment with incomplete downward rotation.
Regional leptomeningeal development is also impaired,
resulting in cystic dilation of the subarachnoid space. True
Dandy-Walker malformation (DWM) involves cerebellar
hypoplasia and incomplete rotation. An inferiorly gaping
fourth ventricle communicates openly with the cisterna
magna, producing a “keyhole” appearance. The torcular her-
ophili can be elevated above the level of the lambdoid sutures
(torcular-lambdoid inversion). Occipital cephalocele and
other CNS malformations can be present. Dandy-Walker var-
iant (DWV) is a milder form of DWM, with less severe cere-
bellar hypoplasia and malrotation. Mega cisterna magna
(MCM) refers to dilation of the posterior fossa subarachnoid
space, sometimes with scalloping of the occipital inner table
due to leptomeningeal underdevelopment. Isolated MCM, in
which the cerebellum is fully developed, does not require
clinical or genetic workup (Fig. 8).67-70 MCM should be dis-
tinguished from arachnoid cyst, which is delimited from sur-
rounding walls and exerts asymmetric mass effect on the
cerebellum. Another differential diagnosis is the Blake pouch



Figure 8 Dandy-Walker spectrum. True Dandy-Walker malformation shows hypoplastic cerebellum (circle) with coun-
terclockwise rotation, torcular elevation “torcular-lambdoid inversion” (solid arrow), and occipital cephalocele (aster-
isk). Dandy-Walker variant is a milder manifestation with less severe cerebellar hypoplasia and malrotation (dotted
circle). Mega cisterna magna refers to dilation of the posterior fossa subarachnoid space, sometimes with scalloping of
the occipital inner table (dotted arrows).
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cyst, which results from embryonic nonperforation of the tela
choroidea at the foramen of Magendie, with progressive cys-
tic dilation and uplifting of a normally formed
cerebellum.71,72

Although the pathogenesis of DWM is not fully under-
stood, several cases are linked to genetic loci, including
numerous chromosomal aberrations (most commonly tri-
somy 18) and copy number variations.73 Deletions or loss of
function variants in three transcription factors (FOXC1,
ZIC1 and ZIC4) are best described, but account for only 5%
of cases.74 DWM is associated with over 70 monogenic loci
overall in the HPO.5 Syndromic malformations and congeni-
tal infections can also manifest with DWM, frequently in
combination with other CNS malformations. A comprehen-
sive effort to exhaustively search for genetic causes of DWM
demonstrated a diagnostic yield of exome sequencing of
16%.75
Joubert Syndrome-Related Disorders
Joubert syndrome-related disorders (JSRD) are a complex
group of posterior fossa dysplasias with a characteristic
“molar tooth” appearance of the midbrain at imaging.75-77

On diffusion tensor imaging, there is absent decussation of
the superior cerebellar peduncles, resulting in a deep interpe-
duncular fossa (“crown” of molar tooth). The superior cere-
bellar peduncles fail to decussate (analogous to Probst
bundles), and appear thickened, parallel, and horizontal
(“roots” of molar tooth). Hindbrain malformations can
include cerebellar dysplasia with hypoplastic vermis and
internally malrotated hemispheres (Fig. 9).78,79 Cerebellar
clefts, heterotopias, and rhombencephalosynapsis have also
been reported. Patients can have additional ocular, renal,
liver, craniofacial, and digital abnormalities.80

JSRD have been widely linked to abnormalities of cilia
development and function. While a large number of genetic
loci have been described, the most commonly reported cili-
opathy mutations are AHI1, CPLANE1, CC2D2A, CEP290,
KIAA0586, MKS1 and TMEM67, which have been reported
in >5% of affected cases for at least one reasonably sized
cohort. Nearly all described JSRD loci are autosomal reces-
sive, except for oro-facial-digital syndrome (OFD1) which is
X-linked, The sensitivity of sequencing is very high, except
in nephronophthisis (NPHP1) where 25% of cases have a
CNV. Therefore, a reasonable approach is to perform com-
prehensive sequencing of known JSRD loci, plus CNV analy-
sis of NPHP1 and a few other loci reported to yield a
diagnosis in the majority of patients (60 to over 95%,
depending on the series). Also, panel testing is highly likely
to be successful, and is a reasonable alternative to ES/GS per
patient/family preference or when resources are con-
strained.80-84
Pontine Tegmental Cap Dysplasia
Pontine tegmental cap dysplasia is an unusual malformation
in which transverse pontine fibers course ectopically along
the dorsal brainstem, yielding a characteristically small basis
pontis and dorsal pontine “cap” (Fig. 10).85,86 Associated
findings include cranial nerve, brainstem, internal auditory



Figure 9 Joubert syndrome-related disorders. (A) Joubert syndrome-related disorders are characterized by a “molar
tooth” appearance of the midbrain, which results from absent decussation of the superior cerebellar peduncles with a
deep interpeduncular fossa (dotted white arrow) and thickened parallel superior cerebellar peduncles (black arrows).
The cerebellum is variably dysplastic with small vermis and malrotated hemispheres. (B) Diffusion tensor imaging frac-
tional anisotropy maps demonstrate the “central red dots” (top row, arrows) corresponding to normal midline decussa-
tions in the brainstem at the level of midbrain, pons, and medulla. These decussations are absent in Joubert syndrome
(bottom row, arrows). (Color version of figure is available online.)
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canal and ocular anomalies.87 Diffusion tensor imaging can
reveal additional connectivity changes, such as ectopic peri-
pontine arcuate fibers.88-90 This disorder is theorized to
reflect abnormal axonal pathfinding and/or neuronal migra-
tion, though a clear locus has not been identified. A few cases
have been reported with genetic overlap in cerebellar and
oculoauriculovertebral spectrum disorders.91-95
Rhombencephalosynapsis
Rhombencephalosynapsis (RES) refers to partial or complete
absence of the cerebellar vermis and cerebellar hemispheres,
including lobules, nuclei, and afferent/efferent connections.
The folia and white matter tracts course horizontally across
midline, and the deep gray nuclei are medialized or fused
(Fig. 11). Patients may have additional brain malformations,
craniofacial abnormalities, and visceral defects (cardiac,
renal, musculoskeletal).96-100

RES has broad genetic heterogeneity and has been
described with various chromosomal abnormalities. Given
the rarity of familial occurrences, linkage studies have yet
to be undertaken to identify causal genes. RES has been
reported in association with G�omez-L�opez-
Hern�andez (cerebello-trigeminal-dermal dysplasia) syn-
drome, GM1 gangliosidosis, VACTERL association, and
autosomal dominant polycystic kidney disease.101-107

MN1 C-terminal truncation syndrome is a newly
described condition with partial RES, perisylvian polymi-
crogyria, and craniofacial abnormalities.108,109 In the
HPO, N-terminus CAG repeat single gene mutations asso-
ciated with RES are seen exclusively in conjunction with
HPE.5,110



Figure 10 Pontine tegmental cap dysplasia. Sagittal image shows small basis pontis with ectopic dorsal pontine bump
(arrow).
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Destructive Lesions
Destructive (encephaloclastic) lesions occur when the nor-
mally developing brain is damaged by an acquired insult,
such as infection, ischemia, or trauma. The resulting malfor-
mations have characteristic appearances based on the devel-
opmental stage at the time of insult. Prenatal history and
laboratory testing may point to an inciting congenital infec-
tion or other disruptive event. Most cases are nongenetic,
though workup may be indicated for atypical or severe pre-
sentations.
Figure 11 Rhombencephalosynapsis. Fused cerebellar hemis
(arrows), and horizontal folia (dotted lines). Supratentorial abn
Acrania-Exencephaly-Anencephaly Sequence
The acrania-exencephaly-anencephaly sequence is the earliest
and most severe destructive brain insult that occurs during
gestation. Acrania refers to partial (merocrania) or total (hol-
ocrania) absence of the cranial vault. This exposes the brain
parenchyma to repeated mechanical trauma, as well as chem-
ical injury by amniotic fluid. Most cases are sporadic with
increased risk of maternal folate deficiency, as with other
neural tube defects. There is association with additional ecto-
dermal defects including amniotic band syndrome,
pheres with absent vermis, medialized dentate nuclei
ormalities are frequently associated (asterisk).



Figure 12 Acrania-exencephaly-anencephaly sequence. Absence of the cranial vault in utero (acrania) results in chemical
and mechanical damage to the developing brain. As the cerebral hemispheres degenerate, they form a “Mickey Mouse”
appearance (exencephaly). In the end stage, there is a “frog face” appearance with minimal angiomatous stroma and no
intact supratentorial brain parenchyma.
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limb�body wall complex, and pentalogy of Cantrell. Exence-
phaly represents the intermediate stage with partial degenera-
tion of cerebral hemispheres, whileanencephaly represents
the end stage of degeneration into angiomatous stroma with
residual facial structures (Fig. 12).111-116
Schizencephaly & Porencephaly
Schizencephaly is caused by an early gestational insult (<20-
24 weeks) that occurs prior to migration of cortical progeni-
tor cells. The resulting defects can be closed-lip, narrow
open-lip, or wide open-lip, with larger defects demonstrating
greater neurological deficits. As development progresses, cor-
tical cells migrate to the periphery of the intact brain, includ-
ing the edges of the destroyed cavity, which become lined by
disorganized gray matter (polymicrogyria). Optimal imaging
evaluation of schizencephaly requires high-resolution multi-
planar technique, since low-resolution studies may suffer
from volume averaging. A unique imaging feature is the ven-
tricular “dimple”, which marks the pial-ependymal seam of
Figure 13 Schizencephaly. Early gestational insults produce gr
or open-lip, depending on the severity of brain destruction. As
tic nature of the insult, with formation of a contiguous pial-epe
CSF connecting the ventricular system to the subarachnoid
space (Fig. 13).6,117-120

Porencephaly is caused by a mid-gestational (»second tri-
mester) insult, at which point cortical neurons have already
fully migrated to the surface of the brain. As a result, the
encephaloclastic cavity becomes lined by white matter with
relatively smooth margins. Due to the immaturity of support-
ing astroglial cells, porencephalic cysts show near-complete
internal liquefaction and minimal surrounding scarring.
Cysts adjacent to the ventricle can fully resorb, creating an ex
vacuo appearance (Fig. 14).6,120,121

Genetic evaluation of encephaloclastic disease has been
historically focused on severe cerebrovascular disease, for
example mutations of collagen type IV (COL4A1, COL4A2)
causing fetal hemorrhage and/or ischemia, which were origi-
nally thought to account for up to 50% of cases.122-126 Sub-
sequent investigations have demonstrated a larger range of
causal genes and wider uncertainty of the fraction of disease
presently explainable by genetic testing. The Neuro-MIG
Group, a pan-European multidisciplinary network on brain
ey matter-lined polymicrogyric clefts that can be closed-
sociated ventricular “dimple” reflects the encephaloclas-
ndymal seam (arrowheads).



Figure 14 Porencephaly. White matter-lined encephaloclastic cavities (asterisks) abutting the lateral ventricles with min-
imal astrogliosis, reflecting midgestational ischemic insults.
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malformations, has summarized 27 known encephaloclastic
genes, and recommends evaluation of all loci whenever a
genetic cause of schizencephaly or porencephaly is sought.
In practice, it may be difficult to ensure that a commercial
panel meets the Neuro-MIG standard. Therefore, it may be
easier to obtain ES or GS and direct the lab’s attention to rele-
vant mutations (Neuro-MIG also endorses ‘exome slice’ with
reflex to ES).6
Hydranencephaly
Hydranencephaly is a severe form of porencephaly affecting
nearly the entire cerebral mantle (“transmantle”), with mini-
mal sparing of the posterior cerebrum, basal ganglia, and
infratentorial structures due to autoregulation.127-130 Again,
because of astroglial immaturity at this stage, the majority of
supratentorial brain is resorbed and replaced by CSF cavities.
Most cases are felt to be sporadic and related to severe prena-
tal insults (ischemic, infectious, metabolic) with bilateral ICA
occlusion (Fig. 15).131-133

Genetic causes are poorly understood and largely limited
to individual case reports or small series (COL4A1, PIK3CA,
LAMB1, CEP55, TUBA1A).134-138 These may in fact be phe-
nocopies that correspond to severe manifestations of genetic
encephaloclastic insults. The only well-characterized genetic
condition is Fowler syndrome, caused by biallelic pathogenic
Figure 15 Hydranencephaly. Supratentorial transmantle pore
brain parenchyma (asterisks). A small amount of posterior cere
variants in the FLVCR2 gene, This presents as hydranence-
phaly (secondary to proliferative vasculopathy) and multiple
pterygia characterized by joint contractures and webbing
(resulting in fetal akinesia deformation sequence).139,140
Maximal Hydrocephalus
Unlike hydranencephaly, in hydrocephalus there is an intact
cortical mantle that is simply compressed by the dilated ven-
tricular system. Etiologies of pediatric hydrocephalus include
congenital malformations such as aqueductal stenosis, Chiari
malformation, or Blake pouch cyst; tumors; infection/inflam-
mation; and hemorrhage associated with prematurity or coa-
gulopathy. The level of obstruction can be within the
ventricular system (obstructive, noncommunicating) or at
the level of arachnoid granulations (nonobstructive, commu-
nicating). “Dangling” choroid plexus may be seen floating
dependently within the enlarged lateral ventricles. In severe
hydrocephalus, ventricular diverticula can outpouch and
herniate over dural reflections, including the falx cerebri and
tentorium cerebelli. Surgical CSF diversion and/or correction
of the inciting etiology will allow for parenchymal reexpan-
sion (Fig. 16).141,142

Etiologies of congenital hydrocephalus are extremely
broad, including both sporadic and genetic conditions. It is
important to evaluate the underlying cause and identify any
ncephaly with near-complete absence of supratentorial
brum, basal ganglia, and cerebellum are preserved.



Figure 16 Maximal hydrocephalus. Fetal head ultrasound (i) shows ventriculomegaly with dependently dangling cho-
roid plexus (white arrows). Postnatal MRI (ii) with floating choroid (black arrows) and thinned cortical mantle com-
pressed against the inner table. Right atrial diverticulation (asterisk) extends over the tentorium cerebelli.
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brain malformations that can direct appropriate genetic test-
ing.143-150
Encephalomalacia
Encephalomalacia is observed with later (at least third trimes-
ter) acquired brain injuries, at which time the astroglia have
matured and proliferated. Brain injuries are thus associated
with greater parenchymal gliosis involving scarring, septa-
tions, and wall irregularity (Fig. 17).151,152

Although cystic encephalomalacia was historically consid-
ered to be sporadic, more recent reports describe certain
genetic mimics of neonatal hypoxic-ischemic injury. For
example, sulfur metabolism defects and Molybdenum Cofac-
tor Deficiency (MoCD) can demonstrate fetal/neonatal cystic
encephalomalacia. One form of MoCD has an approved
treatment, making early diagnosis crucial. When this condi-
tion is under consideration, rapid ES or GS in parallel with
biochemical studies is indicated. Empiric trials of therapy
while awaiting confirmation may also be considered.153,154
Figure 17 Encephalomalacia. Preterm brain injury (i) with wed
(arrows). Term brain injury (ii) with global volume loss and
Severe hypoxic-ischemic injury (iii) with developing multifoca
Migrational Lesions
Malformations of cortical development (MCDs) are caused by
abnormalities of neural migration. Depending on the under-
lying mechanism, a vast array of morphological abnormalities
can result with focal, segmental, or diffuse patterns. We cover
major classes of MCDs related to undermigration, overmigra-
tion, and organization.
Gray Matter Heterotopia
Gray matter heterotopia refers to collections of normal gray
matter in abnormal locations. Periventricular or subependy-
mal heterotopia results from early neural disruption at the
level of the ventricular ependyma, resulting in complete fail-
ure of outward migration. Subcortical or columnar heteroto-
pia refers to a partially or fully transmantle mass of gray
matter (“pseudotumor”), which can integrate blood vessels
and CSF (Fig. 18).6,155-160 Band heterotopia indicates under-
migration, which will be discussed in the Lissencephaly-
Pachygyria section. Leptomeningeal heterotopia indicates
ge-shaped periventricular white matter hyperintensities
ulegyria preferentially affecting the deep cerebral sulci.
l cystic encephalomalacia (asterisks).



Figure 18 Gray matter heterotopia. Periventricular or subbependymal heterotopia can be focal or diffuse (white arrows).
Subcortical or columnar heterotopia demonstrates a pseudotumor appearance (white arrows) with mass effect and
swirling/infolding of cortical vessels.

Congenital brain malformations 17
overmigration, which will be discussed in the Cobblestone
Cortex section.
In practice, the most common finding is periventricular nod-

ular heterotopia (PVNH), with multiple nodules of grey matter
studding the lateral ventricles. PVNH can occur in isolation or
be associated with other brain and body malformations. PVNH
has been reported in conjunction with numerous different
CNVs. The most common mutation affects the cytoskeletal pro-
tein filamin A (FLNA), which shows X-linked inheritance with
variable expressivity. When a child tests positive for FLNA, it is
not uncommon to discover an affected mother as well.161,162

Heterotopia can also be seen in association with various chro-
mosomal aberrations and genetic conditions.163-170
Lissencephaly-Pachygyria
Previously termed “classic” or “type I” lissencephaly, the lissence-
phaly spectrumnow includes various degrees of undermigration.
From most to least severe, these are classified as agyria (absent
gyri), pachygyria (broad gyri), and subcortical band heterotopia
(SBH). The fetal brain starts out with a rudimentary “figure 8”
gyral pattern and simplified cortical architecture, then subse-
quently folds and organizes from the second trimester through
postnatal life. Partial lissencephaly presents with thin under-
folded cortex (molecular layer), subcortical cell-sparse zone
(white matter), and thick heterotopic gray matter (trapped neu-
ronal cell bodies). Band heterotopia is a milder condition with
thicker and more normally folded cortex with thinner bands of
subcortical graymatter (Fig. 19A).6,156-160,171-173

The severity and gradient of lissencephaly depend on the
specific molecular pathogenesis. Classic Miller-Dieker syn-
drome is seen with LIS1 mutations, giving rise to posterior
pachygyria and abnormal facies.174,175 Double cortex (DCX)
is an X-linked gene that produces anterior pachygyria and
band heterotopia.176,177 Norman-Roberts syndrome is seen
with RLN or VLDRL mutations, yielding severe cerebellar
hypoplasia with ataxia (Fig. 19B).178,179

Prior authors have proposed a general approach to priori-
tize genes for analysis and prognosticate clinical out-
comes.180-182 Given the enormous advances in sequencing
capacity since the original publications, it is probably
sufficient to recognize that a case is on the lissencephaly
spectrum, and select an appropriate panel or pursue ES. The
main exception is recognition of a possible case of Miller-Die-
ker syndrome due to a large deletion of at least PAFAH1B1
and YWHAE, detectable by microarray or even classical kar-
yotype in some cases.
Cobblestone Cortex
Previously known as “cobblestone” or “type II” lissencephaly,
the cobblestone cortex is now understood to represent a
completely separate group of disorders related to overmigra-
tion.6,156-160 Defects in the pial basement membrane (glia
limitans) result in failed cytoskeletal attachments with disor-
ganized and uncontrolled migration into the subpial and
subarachnoid spaces. On imaging, the cortex can appear vari-
ably irregular, with gap size determining the overall mor-
phology. Large glial gaps produce a pachygyria-like (“piano-
key”) appearance, while smaller gaps yield a polymicrogyria-
like appearance. In the posterior fossa, cerebellar migration is
guided by external granule cells that adhere to the basement
membrane. The characteristic peripheral cerebellar cysts
actually represent subarachnoid CSF inclusions engulfed by
dysplastic leptomeningeal tissue.183-186 Additional imaging
features can include brainstem kinking, pontocerebellar
hypoplasia, and hypomyelination reflective of diffusely disor-
dered development (Fig. 20).187-189

There are two major considerations in the genetic evalua-
tion of cobblestone cortex. The first is the co-occurrence of
muscle and/or eye diseases, caused by alpha-dystroglycano-
pathies including muscle-eye-brain disease, Fukuyama mus-
cular dystrophy, and Walker-Warburg syndrome.190-197 The
second is awareness that the earlier literature conflated cob-
blestoning with polymicrogyria and/or lissencephaly. Indeed,
The HPO still indexes cobblestoning as ‘Type II
lissencephaly (HP:0007260).5
Polymicrogyria
Polymicrogyria (PMG) refers to multiple small and irregular
cerebral gyri. Currently, PMG is classified as an abnormality



Figure 19 Lissencephaly-pachygyria on postnatal imaging. (A) Classic lissencephaly spectrum. Agyria refers to complete
lissencephaly with “figure 8” brain showing absent gyration and simplified cortical layers. Pachygyria or “thick cortex”
represents partial lissencephaly with thin underfolded cortex, subcortical cell-sparse zone, and thick subcortical gray
matter (white arrows). Band heterotopia designates thicker and more normally folded cortex with thinner bands of
subcortical gray matter (black arrows). (B) Variant lissencephaly with callosal hypogenesis (dotted oval) and cerebellar
hypoplasia (solid circle).
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of late neuronal migration and early cortical organization.
Optimal imaging evaluation requires high-resolution multi-
planar technique, since low-resolution studies may suffer
from volume averaging. On conventional MRI field strengths,
the appearance of PMG can vary between thin irregular, deep
sawtooth, and thick palisaded morphologies (Fig. 21).198-201

On ultra-high-field imaging, the appearance of PMG is much
more uniform due to the ultrahigh spatial resolution.202,203

PMG shows tremendous variation in pathogenesis, distri-
bution, and histologic features, with the HPO describing
over 200 associated genes.5,6,156-160 PMG is also described in
early destructive congenital infections (eg, cytomegalovirus,
Zika virus).204,205 Of note, the PIK3CA-related overgrowth
syndromes (PROS) arise from somatic mutations that may
not be detected by blood testing. One characteristic over-
growth phenotype is MPPH, megalencephaly-polydactyly-
polymicrogyria-hydrocephalus syndrome. With suspected
overgrowth disorders, testing of affected tissue (eg, cheek
swab, skin biopsy) is preferable to sequencing on blood, and
targeted assays may be required.206-212



Figure 20 Cobblestone cortex. Dystroglycanopathy (i) with fine cobblestone cortex, white matter signal abnormality,
and peripheral cerebellar cysts (white arrows). Walker-warburg syndrome (ii) with coarse “piano-key” cortex, periven-
tricular nodular heterotopia, and Z-shaped brainstem (black arrow).
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Megalencephaly
Megalencephaly (MEG) refers to hamartomatous brain over-
growth with disorganized migration, proliferation, and differ-
entiation. Anatomic distribution can be segmental (lobar,
quadrantic, hemispheric) or diffuse. Affected regions show
regional parenchymal enlargement and disorganization,
which can include accelerated and disorganized myelination,
loss of gray-white distinction, abnormal brain folding, and
other migrational abnormalities. There can be regional cuta-
neous stigmata, as well as soft tissue and bone overgrowth
(Fig. 22).6,156-160

Overgrowth pathways have already been discussed in the
setting of PMG, and can also manifest with megalencephaly.
Most causal variants are either mosaic or de novo, rather
than inherited.206-212 A recently described autosomal reces-
sive condition is STRADA-related MEG.213,214 Aside from
this, the major pathways to consider are AKT3, PIK3CA,
PIK3R2, CCND2, PTEN, and mTOR, which may be distin-
guished clinically based on extra-CNS findings. Given the
high burden of de novo and/or mosaic variants, targeted
approaches are likely to be more productive than untargeted
testing in blood. The one exception to this is the detection of
large scale AKT3 deletions, which are still best detected by
microarray.215,216
Focal Cortical & Miscellaneous Dysplasias
Focal cortical dysplasias are localized MCDs and represent
the most common etiology of medically refractory epilepsy
in children. The ILAE (International League Against Epi-
lepsy) classification is based on histologic rather than radio-
logic criteria. FCD I is characterized by abnormal cortical
lamination, which is radial in type Ia, tangential in Ib, and
both in Ic. FCD II (Taylor dysplasia) has the best surgical



Figure 21 Polymicrogyria. Bilateral perisylvian cortical irregularity (arrowheads) with broad shallow Sylvian fissures and
prominent overlying subarachnoid spaces.

Figure 22 Megalencephaly. Depending on developmental timing of genetic mutation, brain overgrowth of the brain can
be diffuse or segmental (eg, lobar, quadrantic, hemispheric).
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Figure 23 Focal cortical dysplasias. FCD I can be very subtle or occult on imaging, showing subtle gray-white blurring
and dysgyria (arrows). FCD II is characterized by a transmantle signal abnormality (arrows) tracking to the bottom of
an abnormal sulcus. FCD IIIb refers to dysplasia (arrows) associated with a low-grade tumor, such as dysembryoplastic
neuroepithelial tumor. FCD IIIc indicates dysplasia associated with a vascular malformation (arrows).
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prognosis, due to the typically localized imaging with a clas-
sic trasnmantle or “bottom of the sulcus” dysplasia. Type IIa
contains only dysmorphic neurons, while type IIb also
Figure 24 Sublobar dysplasia. Right anterior gyrus rectus (whit
ing pattern, connected to normal brain by a thin isthmus (blac
contains balloon progenitor cells with increased epilepto-
genic potential. FCD III refers to lesions with “dual” or con-
current pathology associated with dysplasia. Type IIIa is seen
e arrowheads) demonstrates anomalous signal and fold-
k arrowheads).



Figure 25 Compound dysplasia. Right posterior quadrant overgrowth (dotted circle) includes polymicrogyria, periven-
tricular heterotopia, gliosis, cortical dysplasia (white arrowhead), and vascular dysplasia (black arrowhead) in a devel-
opmental distribution.
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with hippocampal sclerosis, IIIb with glioneuronal tumor,
IIIc with vascular malformation, and IIId with developmental
insult (trauma, ischemia, infection) (Fig. 23).6,156-160,217,218

Optimal imaging diagnosis of FCD requires 3D high-reso-
lution sequences to identify aberrant cortical folding (dysgy-
ria), loss of gray-white distinction, and abnormal white
matter signal (dysmyelination). Diagnosis during fetal MRI is
nearly impossible, given the inherently low-resolution and
motion-degraded sequences. In infants with incomplete mye-
lination, underdeveloped white matter can also obscure
underlying dysplasias. Therefore, a negative early brain MRI
with continued clinical suspicion for structural abnormality
merits a follow-up MRI later in life to increase the likelihood
of epileptogenic focus detection.
Genetically, FCDs are an interesting subset of disorders

because they are frequently targeted for surgical resection in
treatment-refractory epilepsy, allowing detailed study of the
mosaic tissue. FCD II shows somatic mTOR variants,219,220

while FCD 1 is heterogeneous with 30% of cases linked to
disorders of glycosylation from biallelic variants in
SLC35A2.221-223 It has been suggested that paired genome-
wide sequencing of brain tissue and blood would be neces-
sary to increase diagnostic yield in FCDs.224,225

Overall, the classification of MCDs continues to evolve,
and certain cases defy conventional taxonomic classification.
Sublobar dysplasia is a rare malformation that involves part
Figure 26 Tubulinopathies. Panmigrational defects with asymm
ganglia, hypoplastic anterior limbs of internal capsules, and ve
of a cerebral lobe, separated from the rest of the brain by
deep cortical infolding and a thin connecting isthmus
(Fig. 24).226-228 Other complex or compound dysplasias
may display features of multiple malformations, in a trans-
mantle or segmental distribution suggesting migrational ori-
gin (Fig. 25).229,230
Tubulinopathies
Tubulinopathies encompass a diverse spectrum of malforma-
tions linked to defects of microtubules, which are critically
involved in regulating neural development and migration.
The constellation of findings reflects global developmental
disruption, with panmigrational abnormalities encompassing
many of the previously described pathways. Imaging features
can include central or diffuse pachygyria (undermigration) or
polymicrogyria (overmigration), callosal and cerebellar hypo-
genesis, and ventriculomegaly. Highly specific findings are
underdevelopment of the anterior limbs of internal capsules,
dysmorphic basal ganglia including fused caudate and puta-
mina, and hooked frontal horns. Imaging abnormalities are
typically asymmetric, reflecting the inherent dynamic insta-
bility of microtubule energetics. This is a key distinction
from other genetic encephalopathies, which tend to be rela-
tively symmetric (Fig. 26).231-234
etric pachygyria and polymicrogyria, dysmorphic basal
ntriculomegaly.
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Tubulinopathies have been linked to variants in the alpha,
beta, and gamma subtypes (TUBA1A, TUBB2B and
TUBB3).6,156-160 However, imaging features can overlap
broadly with other disorders, such that molecular diagnosis
is best pursued with either a very broad brain malformations
panel or ES/GS. The burden of CNVs is sufficiently low that
it is appropriate to proceed directly to sequencing if imaging
is highly suggestive.235,236
Conclusion
Congenital brain malformations reflect developmental dis-
ruptions at various stages of development. The clinical pre-
sentation is nonspecific and can include developmental
delay, hypotonia, and/or epilepsy. An integrated diagnostic
approach includes radiologic phenotyping and directed
genetic testing, and necessitates multidisciplinary collabora-
tion between neurologists, radiologists, and geneticists. In
this article, we provide an overview of clinical workflow for
fetal/postnatal neuroimaging and genetic testing. Our simpli-
fied imaging-based etiologic classification includes malforma-
tive, destructive, and migrational abnormalities. For the
various radiologic ontologies, key neuroimaging features can
be linked to embryology and molecular pathogenesis.
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